sklearn.svm.libsvm.fit

sklearn.svm.libsvm.fit()

Train the model using libsvm (low-level method)

Parameters
Xarray-like, dtype=float64, size=[n_samples, n_features]
Yarray, dtype=float64, size=[n_samples]

target vector

svm_type{0, 1, 2, 3, 4}, optional

Type of SVM: C_SVC, NuSVC, OneClassSVM, EpsilonSVR or NuSVR respectively. 0 by default.

kernel{‘linear’, ‘rbf’, ‘poly’, ‘sigmoid’, ‘precomputed’}, optional

Kernel to use in the model: linear, polynomial, RBF, sigmoid or precomputed. ‘rbf’ by default.

degreeint32, optional

Degree of the polynomial kernel (only relevant if kernel is set to polynomial), 3 by default.

gammafloat64, optional

Gamma parameter in rbf, poly and sigmoid kernels. Ignored by other kernels. 0.1 by default.

coef0float64, optional

Independent parameter in poly/sigmoid kernel. 0 by default.

tolfloat64, optional

Numeric stopping criterion (WRITEME). 1e-3 by default.

Cfloat64, optional

C parameter in C-Support Vector Classification. 1 by default.

nufloat64, optional

0.5 by default.

epsilondouble, optional

0.1 by default.

class_weightarray, dtype float64, shape (n_classes,), optional

np.empty(0) by default.

sample_weightarray, dtype float64, shape (n_samples,), optional

np.empty(0) by default.

shrinkingint, optional

1 by default.

probabilityint, optional

0 by default.

cache_sizefloat64, optional

Cache size for gram matrix columns (in megabytes). 100 by default.

max_iterint (-1 for no limit), optional.

Stop solver after this many iterations regardless of accuracy (XXX Currently there is no API to know whether this kicked in.) -1 by default.

random_seedint, optional

Seed for the random number generator used for probability estimates. 0 by default.

Returns
supportarray, shape=[n_support]

index of support vectors

support_vectorsarray, shape=[n_support, n_features]

support vectors (equivalent to X[support]). Will return an empty array in the case of precomputed kernel.

n_class_SVarray

number of support vectors in each class.

sv_coefarray

coefficients of support vectors in decision function.

interceptarray

intercept in decision function

probA, probBarray

probability estimates, empty array for probability=False