sklearn.semi_supervised
.LabelPropagation¶
-
class
sklearn.semi_supervised.
LabelPropagation
(kernel='rbf', gamma=20, n_neighbors=7, max_iter=1000, tol=0.001, n_jobs=None)[source]¶ Label Propagation classifier
Read more in the User Guide.
- Parameters
- kernel{‘knn’, ‘rbf’, callable}
String identifier for kernel function to use or the kernel function itself. Only ‘rbf’ and ‘knn’ strings are valid inputs. The function passed should take two inputs, each of shape [n_samples, n_features], and return a [n_samples, n_samples] shaped weight matrix.
- gammafloat
Parameter for rbf kernel
- n_neighborsinteger > 0
Parameter for knn kernel
- max_iterinteger
Change maximum number of iterations allowed
- tolfloat
Convergence tolerance: threshold to consider the system at steady state
- n_jobsint or None, optional (default=None)
The number of parallel jobs to run.
None
means 1 unless in ajoblib.parallel_backend
context.-1
means using all processors. See Glossary for more details.
- Attributes
- X_array, shape = [n_samples, n_features]
Input array.
- classes_array, shape = [n_classes]
The distinct labels used in classifying instances.
- label_distributions_array, shape = [n_samples, n_classes]
Categorical distribution for each item.
- transduction_array, shape = [n_samples]
Label assigned to each item via the transduction.
- n_iter_int
Number of iterations run.
See also
LabelSpreading
Alternate label propagation strategy more robust to noise
References
Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with label propagation. Technical Report CMU-CALD-02-107, Carnegie Mellon University, 2002 http://pages.cs.wisc.edu/~jerryzhu/pub/CMU-CALD-02-107.pdf
Examples
>>> import numpy as np >>> from sklearn import datasets >>> from sklearn.semi_supervised import LabelPropagation >>> label_prop_model = LabelPropagation() >>> iris = datasets.load_iris() >>> rng = np.random.RandomState(42) >>> random_unlabeled_points = rng.rand(len(iris.target)) < 0.3 >>> labels = np.copy(iris.target) >>> labels[random_unlabeled_points] = -1 >>> label_prop_model.fit(iris.data, labels) LabelPropagation(...)
Methods
fit
(self, X, y)Fit a semi-supervised label propagation model based
get_params
(self[, deep])Get parameters for this estimator.
predict
(self, X)Performs inductive inference across the model.
predict_proba
(self, X)Predict probability for each possible outcome.
score
(self, X, y[, sample_weight])Returns the mean accuracy on the given test data and labels.
set_params
(self, \*\*params)Set the parameters of this estimator.
-
__init__
(self, kernel='rbf', gamma=20, n_neighbors=7, max_iter=1000, tol=0.001, n_jobs=None)[source]¶ Initialize self. See help(type(self)) for accurate signature.
-
fit
(self, X, y)[source]¶ Fit a semi-supervised label propagation model based
All the input data is provided matrix X (labeled and unlabeled) and corresponding label matrix y with a dedicated marker value for unlabeled samples.
- Parameters
- Xarray-like, shape = [n_samples, n_features]
A {n_samples by n_samples} size matrix will be created from this
- yarray_like, shape = [n_samples]
n_labeled_samples (unlabeled points are marked as -1) All unlabeled samples will be transductively assigned labels
- Returns
- selfreturns an instance of self.
-
get_params
(self, deep=True)[source]¶ Get parameters for this estimator.
- Parameters
- deepboolean, optional
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
- paramsmapping of string to any
Parameter names mapped to their values.
-
predict
(self, X)[source]¶ Performs inductive inference across the model.
- Parameters
- Xarray_like, shape = [n_samples, n_features]
- Returns
- yarray_like, shape = [n_samples]
Predictions for input data
-
predict_proba
(self, X)[source]¶ Predict probability for each possible outcome.
Compute the probability estimates for each single sample in X and each possible outcome seen during training (categorical distribution).
- Parameters
- Xarray_like, shape = [n_samples, n_features]
- Returns
- probabilitiesarray, shape = [n_samples, n_classes]
Normalized probability distributions across class labels
-
score
(self, X, y, sample_weight=None)[source]¶ Returns the mean accuracy on the given test data and labels.
In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.
- Parameters
- Xarray-like, shape = (n_samples, n_features)
Test samples.
- yarray-like, shape = (n_samples) or (n_samples, n_outputs)
True labels for X.
- sample_weightarray-like, shape = [n_samples], optional
Sample weights.
- Returns
- scorefloat
Mean accuracy of self.predict(X) wrt. y.
-
set_params
(self, **params)[source]¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.- Returns
- self