sklearn.pipeline
.make_pipeline¶
-
sklearn.pipeline.
make_pipeline
(*steps, **kwargs)[source]¶ Construct a Pipeline from the given estimators.
This is a shorthand for the Pipeline constructor; it does not require, and does not permit, naming the estimators. Instead, their names will be set to the lowercase of their types automatically.
- Parameters
- *stepslist of estimators.
- memoryNone, str or object with the joblib.Memory interface, optional
Used to cache the fitted transformers of the pipeline. By default, no caching is performed. If a string is given, it is the path to the caching directory. Enabling caching triggers a clone of the transformers before fitting. Therefore, the transformer instance given to the pipeline cannot be inspected directly. Use the attribute
named_steps
orsteps
to inspect estimators within the pipeline. Caching the transformers is advantageous when fitting is time consuming.- verboseboolean, optional
If True, the time elapsed while fitting each step will be printed as it is completed.
- Returns
- pPipeline
See also
sklearn.pipeline.Pipeline
Class for creating a pipeline of transforms with a final estimator.
Examples
>>> from sklearn.naive_bayes import GaussianNB >>> from sklearn.preprocessing import StandardScaler >>> make_pipeline(StandardScaler(), GaussianNB(priors=None)) Pipeline(steps=[('standardscaler', StandardScaler()), ('gaussiannb', GaussianNB())])