sklearn.model_selection.ParameterSampler

class sklearn.model_selection.ParameterSampler(param_distributions, n_iter, random_state=None)[source]

Generator on parameters sampled from given distributions.

Non-deterministic iterable over random candidate combinations for hyper- parameter search. If all parameters are presented as a list, sampling without replacement is performed. If at least one parameter is given as a distribution, sampling with replacement is used. It is highly recommended to use continuous distributions for continuous parameters.

Note that before SciPy 0.16, the scipy.stats.distributions do not accept a custom RNG instance and always use the singleton RNG from numpy.random. Hence setting random_state will not guarantee a deterministic iteration whenever scipy.stats distributions are used to define the parameter search space. Deterministic behavior is however guaranteed from SciPy 0.16 onwards.

Read more in the User Guide.

Parameters
param_distributionsdict

Dictionary with parameters names (string) as keys and distributions or lists of parameters to try. Distributions must provide a rvs method for sampling (such as those from scipy.stats.distributions). If a list is given, it is sampled uniformly. If a list of dicts is given, first a dict is sampled uniformly, and then a parameter is sampled using that dict as above.

n_iterinteger

Number of parameter settings that are produced.

random_stateint, RandomState instance or None, optional (default=None)

Pseudo random number generator state used for random uniform sampling from lists of possible values instead of scipy.stats distributions. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random.

Returns
paramsdict of string to any

Yields dictionaries mapping each estimator parameter to as sampled value.

Examples

>>> from sklearn.model_selection import ParameterSampler
>>> from scipy.stats.distributions import expon
>>> import numpy as np
>>> rng = np.random.RandomState(0)
>>> param_grid = {'a':[1, 2], 'b': expon()}
>>> param_list = list(ParameterSampler(param_grid, n_iter=4,
...                                    random_state=rng))
>>> rounded_list = [dict((k, round(v, 6)) for (k, v) in d.items())
...                 for d in param_list]
>>> rounded_list == [{'b': 0.89856, 'a': 1},
...                  {'b': 0.923223, 'a': 1},
...                  {'b': 1.878964, 'a': 2},
...                  {'b': 1.038159, 'a': 2}]
True
__init__(self, param_distributions, n_iter, random_state=None)[source]

Initialize self. See help(type(self)) for accurate signature.