sklearn.compose.TransformedTargetRegressor

class sklearn.compose.TransformedTargetRegressor(regressor=None, transformer=None, func=None, inverse_func=None, check_inverse=True)[source]

Meta-estimator to regress on a transformed target.

Useful for applying a non-linear transformation to the target y in regression problems. This transformation can be given as a Transformer such as the QuantileTransformer or as a function and its inverse such as log and exp.

The computation during fit is:

regressor.fit(X, func(y))

or:

regressor.fit(X, transformer.transform(y))

The computation during predict is:

inverse_func(regressor.predict(X))

or:

transformer.inverse_transform(regressor.predict(X))

Read more in the User Guide.

Parameters
regressorobject, default=LinearRegression()

Regressor object such as derived from RegressorMixin. This regressor will automatically be cloned each time prior to fitting.

transformerobject, default=None

Estimator object such as derived from TransformerMixin. Cannot be set at the same time as func and inverse_func. If transformer is None as well as func and inverse_func, the transformer will be an identity transformer. Note that the transformer will be cloned during fitting. Also, the transformer is restricting y to be a numpy array.

funcfunction, optional

Function to apply to y before passing to fit. Cannot be set at the same time as transformer. The function needs to return a 2-dimensional array. If func is None, the function used will be the identity function.

inverse_funcfunction, optional

Function to apply to the prediction of the regressor. Cannot be set at the same time as transformer as well. The function needs to return a 2-dimensional array. The inverse function is used to return predictions to the same space of the original training labels.

check_inversebool, default=True

Whether to check that transform followed by inverse_transform or func followed by inverse_func leads to the original targets.

Attributes
regressor_object

Fitted regressor.

transformer_object

Transformer used in fit and predict.

Notes

Internally, the target y is always converted into a 2-dimensional array to be used by scikit-learn transformers. At the time of prediction, the output will be reshaped to a have the same number of dimensions as y.

See examples/compose/plot_transformed_target.py.

Examples

>>> import numpy as np
>>> from sklearn.linear_model import LinearRegression
>>> from sklearn.compose import TransformedTargetRegressor
>>> tt = TransformedTargetRegressor(regressor=LinearRegression(),
...                                 func=np.log, inverse_func=np.exp)
>>> X = np.arange(4).reshape(-1, 1)
>>> y = np.exp(2 * X).ravel()
>>> tt.fit(X, y)
TransformedTargetRegressor(...)
>>> tt.score(X, y)
1.0
>>> tt.regressor_.coef_
array([2.])

Methods

fit(self, X, y, \*\*fit_params)

Fit the model according to the given training data.

get_params(self[, deep])

Get parameters for this estimator.

predict(self, X)

Predict using the base regressor, applying inverse.

score(self, X, y[, sample_weight])

Returns the coefficient of determination R^2 of the prediction.

set_params(self, \*\*params)

Set the parameters of this estimator.

__init__(self, regressor=None, transformer=None, func=None, inverse_func=None, check_inverse=True)[source]

Initialize self. See help(type(self)) for accurate signature.

fit(self, X, y, **fit_params)[source]

Fit the model according to the given training data.

Parameters
X{array-like, sparse matrix}, shape (n_samples, n_features)

Training vector, where n_samples is the number of samples and n_features is the number of features.

yarray-like, shape (n_samples,)

Target values.

**fit_paramsdict of string -> object

Parameters passed to the fit method of the underlying regressor.

Returns
selfobject
get_params(self, deep=True)[source]

Get parameters for this estimator.

Parameters
deepboolean, optional

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns
paramsmapping of string to any

Parameter names mapped to their values.

predict(self, X)[source]

Predict using the base regressor, applying inverse.

The regressor is used to predict and the inverse_func or inverse_transform is applied before returning the prediction.

Parameters
X{array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

Returns
y_hatarray, shape = (n_samples,)

Predicted values.

score(self, X, y, sample_weight=None)[source]

Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) ** 2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters
Xarray-like, shape = (n_samples, n_features)

Test samples. For some estimators this may be a precomputed kernel matrix instead, shape = (n_samples, n_samples_fitted], where n_samples_fitted is the number of samples used in the fitting for the estimator.

yarray-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weightarray-like, shape = [n_samples], optional

Sample weights.

Returns
scorefloat

R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor will use multioutput='uniform_average' from version 0.23 to keep consistent with r2_score. This will influence the score method of all the multioutput regressors (except for MultiOutputRegressor). To specify the default value manually and avoid the warning, please either call r2_score directly or make a custom scorer with make_scorer (the built-in scorer 'r2' uses multioutput='uniform_average').

set_params(self, **params)[source]

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Returns
self