Note
Click here to download the full example code or run this example in your browser via Binder
Column Transformer with Heterogeneous Data Sources¶
Datasets can often contain components of that require different feature extraction and processing pipelines. This scenario might occur when:
Your dataset consists of heterogeneous data types (e.g. raster images and text captions)
Your dataset is stored in a Pandas DataFrame and different columns require different processing pipelines.
This example demonstrates how to use
sklearn.compose.ColumnTransformer
on a dataset containing
different types of features. We use the 20-newsgroups dataset and compute
standard bag-of-words features for the subject line and body in separate
pipelines as well as ad hoc features on the body. We combine them (with
weights) using a ColumnTransformer and finally train a classifier on the
combined set of features.
The choice of features is not particularly helpful, but serves to illustrate the technique.
Out:
[Pipeline] ....... (step 1 of 3) Processing subjectbody, total= 0.1s
[Pipeline] ............. (step 2 of 3) Processing union, total= 0.3s
[Pipeline] ............... (step 3 of 3) Processing svc, total= 0.0s
precision recall f1-score support
0 0.71 0.79 0.75 289
1 0.76 0.68 0.71 281
accuracy 0.73 570
macro avg 0.74 0.73 0.73 570
weighted avg 0.74 0.73 0.73 570
# Author: Matt Terry <matt.terry@gmail.com>
#
# License: BSD 3 clause
import numpy as np
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.datasets import fetch_20newsgroups
from sklearn.datasets.twenty_newsgroups import strip_newsgroup_footer
from sklearn.datasets.twenty_newsgroups import strip_newsgroup_quoting
from sklearn.decomposition import TruncatedSVD
from sklearn.feature_extraction import DictVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics import classification_report
from sklearn.pipeline import Pipeline
from sklearn.compose import ColumnTransformer
from sklearn.svm import LinearSVC
class TextStats(TransformerMixin, BaseEstimator):
"""Extract features from each document for DictVectorizer"""
def fit(self, x, y=None):
return self
def transform(self, posts):
return [{'length': len(text),
'num_sentences': text.count('.')}
for text in posts]
class SubjectBodyExtractor(TransformerMixin, BaseEstimator):
"""Extract the subject & body from a usenet post in a single pass.
Takes a sequence of strings and produces a dict of sequences. Keys are
`subject` and `body`.
"""
def fit(self, x, y=None):
return self
def transform(self, posts):
# construct object dtype array with two columns
# first column = 'subject' and second column = 'body'
features = np.empty(shape=(len(posts), 2), dtype=object)
for i, text in enumerate(posts):
headers, _, bod = text.partition('\n\n')
bod = strip_newsgroup_footer(bod)
bod = strip_newsgroup_quoting(bod)
features[i, 1] = bod
prefix = 'Subject:'
sub = ''
for line in headers.split('\n'):
if line.startswith(prefix):
sub = line[len(prefix):]
break
features[i, 0] = sub
return features
pipeline = Pipeline([
# Extract the subject & body
('subjectbody', SubjectBodyExtractor()),
# Use ColumnTransformer to combine the features from subject and body
('union', ColumnTransformer(
[
# Pulling features from the post's subject line (first column)
('subject', TfidfVectorizer(min_df=50), 0),
# Pipeline for standard bag-of-words model for body (second column)
('body_bow', Pipeline([
('tfidf', TfidfVectorizer()),
('best', TruncatedSVD(n_components=50)),
]), 1),
# Pipeline for pulling ad hoc features from post's body
('body_stats', Pipeline([
('stats', TextStats()), # returns a list of dicts
('vect', DictVectorizer()), # list of dicts -> feature matrix
]), 1),
],
# weight components in ColumnTransformer
transformer_weights={
'subject': 0.8,
'body_bow': 0.5,
'body_stats': 1.0,
}
)),
# Use a SVC classifier on the combined features
('svc', LinearSVC(dual=False)),
], verbose=True)
# limit the list of categories to make running this example faster.
categories = ['alt.atheism', 'talk.religion.misc']
X_train, y_train = fetch_20newsgroups(random_state=1,
subset='train',
categories=categories,
return_X_y=True)
X_test, y_test = fetch_20newsgroups(random_state=1,
subset='test',
categories=categories,
return_X_y=True)
pipeline.fit(X_train, y_train)
y_pred = pipeline.predict(X_test)
print(classification_report(y_pred, y_test))
Total running time of the script: ( 0 minutes 1.020 seconds)