.. note::
    :class: sphx-glr-download-link-note

    Click :ref:`here <sphx_glr_download_auto_examples_applications_plot_face_recognition.py>` to download the full example code or run this example in your browser via Binder
.. rst-class:: sphx-glr-example-title

.. _sphx_glr_auto_examples_applications_plot_face_recognition.py:


===================================================
Faces recognition example using eigenfaces and SVMs
===================================================

The dataset used in this example is a preprocessed excerpt of the
"Labeled Faces in the Wild", aka LFW_:

  http://vis-www.cs.umass.edu/lfw/lfw-funneled.tgz (233MB)

.. _LFW: http://vis-www.cs.umass.edu/lfw/

Expected results for the top 5 most represented people in the dataset:

================== ============ ======= ========== =======
                   precision    recall  f1-score   support
================== ============ ======= ========== =======
     Ariel Sharon       0.67      0.92      0.77        13
     Colin Powell       0.75      0.78      0.76        60
  Donald Rumsfeld       0.78      0.67      0.72        27
    George W Bush       0.86      0.86      0.86       146
Gerhard Schroeder       0.76      0.76      0.76        25
      Hugo Chavez       0.67      0.67      0.67        15
       Tony Blair       0.81      0.69      0.75        36

      avg / total       0.80      0.80      0.80       322
================== ============ ======= ========== =======



.. rst-class:: sphx-glr-horizontal


    *

      .. image:: /auto_examples/applications/images/sphx_glr_plot_face_recognition_001.png
            :class: sphx-glr-multi-img

    *

      .. image:: /auto_examples/applications/images/sphx_glr_plot_face_recognition_002.png
            :class: sphx-glr-multi-img


.. rst-class:: sphx-glr-script-out

 Out:

 .. code-block:: none


    /Users/thomasfan/Documents/scikit-learn-bootstrap/sklearn/externals/joblib/__init__.py:15: DeprecationWarning: sklearn.externals.joblib is deprecated in 0.21 and will be removed in 0.23. Please import this functionality directly from joblib, which can be installed with: pip install joblib. If this warning is raised when loading pickled models, you may need to re-serialize those models with scikit-learn 0.21+.
      warnings.warn(msg, category=DeprecationWarning)
    Total dataset size:
    n_samples: 760
    n_features: 1850
    n_classes: 3
    Extracting the top 150 eigenfaces from 570 faces
    done in 0.081s
    Projecting the input data on the eigenfaces orthonormal basis
    done in 0.007s
    Fitting the classifier to the training set
    done in 7.514s
    Best estimator found by grid search:
    SVC(C=1000.0, class_weight='balanced', gamma=0.001)
    Predicting people's names on the test set
    done in 0.010s
                       precision    recall  f1-score   support

      Donald Rumsfeld       0.89      0.86      0.87        36
        George W Bush       0.92      0.98      0.95       123
    Gerhard Schroeder       0.96      0.77      0.86        31

             accuracy                           0.92       190
            macro avg       0.92      0.87      0.89       190
         weighted avg       0.92      0.92      0.92       190

    [[ 31   5   0]
     [  2 120   1]
     [  2   5  24]]





|


.. code-block:: default

    from time import time
    import logging
    import matplotlib.pyplot as plt

    from sklearn.model_selection import train_test_split
    from sklearn.model_selection import GridSearchCV
    from sklearn.datasets import fetch_lfw_people
    from sklearn.metrics import classification_report
    from sklearn.metrics import confusion_matrix
    from sklearn.decomposition import PCA
    from sklearn.svm import SVC


    print(__doc__)

    # Display progress logs on stdout
    logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s')


    # #############################################################################
    # Download the data, if not already on disk and load it as numpy arrays

    lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)

    # introspect the images arrays to find the shapes (for plotting)
    n_samples, h, w = lfw_people.images.shape

    # for machine learning we use the 2 data directly (as relative pixel
    # positions info is ignored by this model)
    X = lfw_people.data
    n_features = X.shape[1]

    # the label to predict is the id of the person
    y = lfw_people.target
    target_names = lfw_people.target_names
    n_classes = target_names.shape[0]

    print("Total dataset size:")
    print("n_samples: %d" % n_samples)
    print("n_features: %d" % n_features)
    print("n_classes: %d" % n_classes)


    # #############################################################################
    # Split into a training set and a test set using a stratified k fold

    # split into a training and testing set
    X_train, X_test, y_train, y_test = train_test_split(
        X, y, test_size=0.25, random_state=42)


    # #############################################################################
    # Compute a PCA (eigenfaces) on the face dataset (treated as unlabeled
    # dataset): unsupervised feature extraction / dimensionality reduction
    n_components = 150

    print("Extracting the top %d eigenfaces from %d faces"
          % (n_components, X_train.shape[0]))
    t0 = time()
    pca = PCA(n_components=n_components, svd_solver='randomized',
              whiten=True).fit(X_train)
    print("done in %0.3fs" % (time() - t0))

    eigenfaces = pca.components_.reshape((n_components, h, w))

    print("Projecting the input data on the eigenfaces orthonormal basis")
    t0 = time()
    X_train_pca = pca.transform(X_train)
    X_test_pca = pca.transform(X_test)
    print("done in %0.3fs" % (time() - t0))


    # #############################################################################
    # Train a SVM classification model

    print("Fitting the classifier to the training set")
    t0 = time()
    param_grid = {'C': [1e3, 5e3, 1e4, 5e4, 1e5],
                  'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1], }
    clf = GridSearchCV(
        SVC(kernel='rbf', class_weight='balanced'), param_grid
    )
    clf = clf.fit(X_train_pca, y_train)
    print("done in %0.3fs" % (time() - t0))
    print("Best estimator found by grid search:")
    print(clf.best_estimator_)


    # #############################################################################
    # Quantitative evaluation of the model quality on the test set

    print("Predicting people's names on the test set")
    t0 = time()
    y_pred = clf.predict(X_test_pca)
    print("done in %0.3fs" % (time() - t0))

    print(classification_report(y_test, y_pred, target_names=target_names))
    print(confusion_matrix(y_test, y_pred, labels=range(n_classes)))


    # #############################################################################
    # Qualitative evaluation of the predictions using matplotlib

    def plot_gallery(images, titles, h, w, n_row=3, n_col=4):
        """Helper function to plot a gallery of portraits"""
        plt.figure(figsize=(1.8 * n_col, 2.4 * n_row))
        plt.subplots_adjust(bottom=0, left=.01, right=.99, top=.90, hspace=.35)
        for i in range(n_row * n_col):
            plt.subplot(n_row, n_col, i + 1)
            plt.imshow(images[i].reshape((h, w)), cmap=plt.cm.gray)
            plt.title(titles[i], size=12)
            plt.xticks(())
            plt.yticks(())


    # plot the result of the prediction on a portion of the test set

    def title(y_pred, y_test, target_names, i):
        pred_name = target_names[y_pred[i]].rsplit(' ', 1)[-1]
        true_name = target_names[y_test[i]].rsplit(' ', 1)[-1]
        return 'predicted: %s\ntrue:      %s' % (pred_name, true_name)

    prediction_titles = [title(y_pred, y_test, target_names, i)
                         for i in range(y_pred.shape[0])]

    plot_gallery(X_test, prediction_titles, h, w)

    # plot the gallery of the most significative eigenfaces

    eigenface_titles = ["eigenface %d" % i for i in range(eigenfaces.shape[0])]
    plot_gallery(eigenfaces, eigenface_titles, h, w)

    plt.show()


.. rst-class:: sphx-glr-timing

   **Total running time of the script:** ( 0 minutes  8.172 seconds)


.. _sphx_glr_download_auto_examples_applications_plot_face_recognition.py:


.. only :: html

 .. container:: sphx-glr-footer
    :class: sphx-glr-footer-example


  .. container:: binder-badge

    .. image:: https://mybinder.org/badge_logo.svg
      :target: https://mybinder.org/v2/gh/scikit-learn/scikit-learn/master?urlpath=lab/tree/notebooks/auto_examples/applications/plot_face_recognition.ipynb
      :width: 150 px


  .. container:: sphx-glr-download

     :download:`Download Python source code: plot_face_recognition.py <plot_face_recognition.py>`



  .. container:: sphx-glr-download

     :download:`Download Jupyter notebook: plot_face_recognition.ipynb <plot_face_recognition.ipynb>`


.. only:: html

 .. rst-class:: sphx-glr-signature

    `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_